Dynamic Time and Power Allocation for Opportunistic Energy Efficient Cooperative Relay

JOHN HERON, HONGJIAN SUN DURHAM UNIVERSITY, UK

Energy efficient wireless communications

Why?

Data demand will only get bigger
 More data rate means more energy consumption!
 User-side – phone batteries
 Supply-side – energy bill

Relays

- Shorter transmission range
- Linear P-d relationship (instead of exponential)
- Reduced interference due to lower transmission power

Cooperative Relays

Traditional Relay

Cooperative Relay

Cooperative Relay Network

► Relay ? ► Worth it ? ► Which relay ? ► Which time ? What power?

Relay Selection, Time Allocation, Power Allocation

ODF
"Opportunistic Decode and Forward"
Maximises <u>capacity</u>

OEE

 "Opportunistic Energy Efficiency"
 Maximises <u>energy</u> efficiency

My Contributions...

 Optimised time allocation algorithm for ODF & OEE
 Globally optimum time & power allocation for EE
 Simulation showed improvement in network performance

Algorithm

No C2? Yes Yes Constraint? (OEE only) No No C3 ? Yes C4? Yes DF: $t_i' = t_{J,i}$ = t_{C,i} DF:

ODF or Unconstrained OEE

Rate-Constrained OEE

No

<u>DT</u>: $t_i' = 1$

No

C1?

Yes

Optimum time allocation

Results

Source Power

Results

Conclusion

Optimum dynamic time allocation algorithm

Globally optimum time and power allocation

Simulation:

Improvement in system performance

Applicable to mobile, ad hoc & vehicular networks, as well as traditional networks